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ABSTRACT: The highly successful fleet of Weather Surveillance Radar-1988 Doppler (WSR-88D) radars is approaching
its end of service, and research efforts are under way to inform a decision toward a possible WSR-88D replacement. A
methodology to link radar design characteristics to impacts on how radar data are used to diagnose hazardous weather was
developed through a unique partnership between radar-engineering innovations in radar simulations and National
Weather Service (NWS) radar data interpretation expertise. Deep commitment to two-way learning across disciplines
resulted in a methodology that is both efficient and highly relevant to the NWS hazardous weather warning program. The
methodology presented in this paper is a model for revealing complex trade-offs between weather radar characteristics and
their resultant impact on NWS data interpretation for threat identification. This qualitative methodology is presented in
the context of a broader proof-of-concept study from which it was developed. Adapted for further research, it can support
the crucial role of deriving quantitative radar design criteria that balance the trade-offs among radar capabilities, cost, and
impact to users. That is, the proposed methodology supports the evaluation of candidates for a potential WSR-88D
replacement and any necessary major system upgrades in the interim.

SIGNIFICANCE STATEMENT: Defining the requirements for an operational weather radar system is ideally achieved
with clearly identified trade-offs among cost, radar design characteristics, and impacts on user data interpretation. This
work is an advancement of the historic evolution of weather radar development to support the U.S. National Weather
Service (NWS) mission, based on collaboration among researchers, radar engineers, and NWS forecasters. The methodol-
ogy presented here is an adaptable tool for revealing these essential, but complex trade-offs, providing a roadmap for
further studies toward the next-generation NWS weather radar fleet.
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1. Introduction

The Weather Surveillance Radar-1988 Doppler (WSR-
88D) fleet is overseen by the Next Generation Weather Radar
(NEXRAD) program and has served the needs of the
National Weather Service (NWS) and other agencies since its
deployment starting in 1991 (Crum and Alberty 1993). A
Service Life Extension Program is expected to meet NWS
operational needs until 2040 (Radar Operations Center 2019),
while research is underway toward an eventual WSR-88D
replacement. For any operational weather radar system, there
are inevitable trade-offs between cost and capabilities to sup-
port user needs. For a potential WSR-88D replacement, deci-
sions are best informed when based on a deep understanding
of these complex trade-offs. This work describes a methodol-
ogy developed from close collaboration between radar engi-
neers and an NWS-proficient meteorologist that can be
adapted for future radar design studies to make fully
informed decisions in support of the NWS’ critical public
safety mission to the American public (Uccellini and Ten
Hoeve 2019).

Radar base data quality is foundational for NWS warning
decision making (Andra et al. 2002; Brotzge and Donner
2013) and is a crucial input for downstream algorithms. In this
work, radar base data refers to the fields of data used by NWS
forecasters: reflectivity (Z), Doppler radial velocity (V), spec-
trum width (SW), differential reflectivity (ZDR), correlation
coefficient (CC), and specific differential phase (KDP).
Another commonly used field included in our analysis is
storm-relative velocity (SRV), which is the Doppler radial
velocity after subtracting the estimated storm motion. All
these fields are used as base radar products by forecasters and
are input to a variety of algorithms, such as the mesocyclone
detection algorithm (MDA) and applications such as the
Multi-Radar Multi-Sensor System (MRMS). Since our analy-
sis methodology focused on single-radar base data quality in
the context of qualitative interpretation for identifying
weather hazards by NWS forecasters, algorithm performance
was not included.

The history of the NEXRAD program provides a model
for a path toward an eventual replacement with crucial collab-
orations since the earliest days. For example, a coupling of
research and operations was noted as a driving force for the
development of the NEXRAD program (Brown and Lewis
2005). Collaborations among researchers, engineers, and
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meteorologists have also been crucial for the major WSR-88D
upgrades throughout the NEXRAD program’s life-span thus far.
An example of such collaborations comes from the WSR-88D
upgrade to dual-polarization, which investigated the trade-off of
a loss of sensitivity against data-interpretation benefits such as
greater confidence in winter precipitation type, location and char-
acteristics of hail, and identification of tornadic debris. A series
of studies involving radar engineers and operational meteorolo-
gists was conducted to fully explore this trade-off, ultimately con-
tributing to the dual-polarization deployment decision (Radar
Operations Center 2010).

In this paper, we present the methodology from a similar
interdisciplinary collaboration that was conducted as part of
the multiagency Spectrum Efficient National Surveillance
Radar (SENSR) program. The SENSR program was estab-
lished to evaluate the feasibility of consolidating several gov-
ernment radar networks into a single frequency allocation
(FAA 2019). Weber et al. (2021) provide an overview of the
research activities under the SENSR program that are relevant
to NOAA’s next-generation operational weather radar
(National Oceanic and Atmospheric Administration (NOAA)
2020). One of the research projects under the SENSR pro-
gram, the SENSR Data Quality (DQ) study, explored the sys-
tematic evaluation of complex trade-offs between cost-driving
radar design characteristics and impacts on user interpretation.
In that proof-of-concept study, a team of engineers and an
NWS-proficient meteorologist developed a methodology that
relies on simulations and qualitative analysis tools. The meth-
odology was tested by exploring how key cost-driving radar
design characteristics (Table 1) impact the quality of the base
data and how this impact is connected to a forecaster’s ability
to interpret the radar data. The SENSR DQ study is referred
to as a proof-of-concept study because it was limited to a sub-
set of radar design characteristics and did not involve all of the
appropriate stakeholders. As a result of these limitations, it
was not intended to be used directly as a basis for developing
future radar requirements. Nevertheless, the SENSR DQ
study demonstrated that, through a proper combination of
simulation and analysis tools, we can obtain meaningful quan-
titative information about complex tradeoffs between radar
design and impacts on forecaster interpretation. The results of
the SENSR DQ study are documented in a technical report

(Nai et al. 2020b). The unique methodology that was devel-
oped to produce these results is the focus of this paper.

The methodology developed for the SENSR DQ study and
documented in this work provides a direct linkage between
specific cost-driving radar design characteristics (e.g., antenna
sidelobe levels) and the resultant impacts on data interpreta-
tion by NWS meteorologists (e.g., antenna sidelobe contami-
nation of the base data in critical locations, such as near the
hook echo of a supercell). In section 2, based on our deep,
shared understanding of the engineering and meteorology
perspectives, we define radar base data quality, which inevita-
bly involves radar design trade-offs. We then discuss the dual-
polarization upgrade of the WSR-88D network, which pro-
vides an example of how these trade-offs were addressed
through interdisciplinary collaborations and served as inspira-
tion for the methodology presented in this work. Base data
quality must be holistically measured by closely coordinated
engineering-based quantitative and user-based qualitative
analyses. Engineers understand the tension among competing
elements of radar design, while meteorologists understand
which aspects of radar performance (e.g., sensitivity) are a pri-
ority for a particular weather hazard (e.g., lake effect snow).
Section 3 describes two key tools that we developed in sup-
port of the proposed methodology: high-fidelity engineering
simulations and NWS forecaster analyses. The methodology
that directly links data produced by different simulated radar
designs to forecasters’ data-interpretation process is pre-
sented in section 4. The first step in this methodology is the
identification of the particular weather threats that are
expected to be most impacted by performance changes associ-
ated with specific cost-driving radar characteristics. After the
relevant weather threats are identified and multiple weather
cases of that threat are chosen, the next step is the use of
high-fidelity engineering simulations to produce realistic base
data as observed by radars with systematically varying charac-
teristics. These simulated data are then qualitatively analyzed
by the meteorologist as an NWS representative using tailored
approaches, which must be designed to effectively reveal the
impacts of a given radar characteristic to radar data interpre-
tation. Considered separately, these two areas of engineering
and meteorological expertise may not be unique, but their
combination is, which resulted in the novel methodology

TABLE 1. Radar design characteristics tested for each weather hazard stressor.

Primary weather hazard
stressor

Radar design characteristics

Antenna pattern sidelobes Range sidelobes Sensitivity Beamwidth Azimuthal sampling

Hail core X X X X
Supercell X
Bow echo X X
Circulation X X
Lake-effect snow X
Mesoscale snowband X
Dendritic growth layer X
Refreezing X
Convective outflow boundaries X
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presented in this paper. Whereas the methodology is
described in the context of the proof-of-concept SENSR DQ
study, it can be adapted and generalized to future studies.

2. Our holistic approach to base data quality and
historical precedent

As we embarked on the SENSR DQ study, we quickly real-
ized that the meaning of “data quality” was significantly differ-
ent for the radar meteorologist compared to the radar
engineers on the team. Our ability to find direct relationships
between specific radar design characteristics and resultant
impacts on NWS forecasters’ data interpretation required
bridging the gap between our somewhat disparate concepts of
data quality. In the past, overcoming these differences and
combining them often led to meaningful improvements to the
WSR-88D’s performance and contributions to radar meteorol-
ogy (e.g., Schuur et al. 2003; Saxion and Ice 2012). Historic
precedent therefore highlights the benefit of reconciling differ-
ing perspectives of data quality to improve weather radar sys-
tems, which is what our team strived to accomplish with the
SENSR DQ study.

a. Radar engineer’s perspective of base data quality

From the radar engineer’s perspective, “data quality” encom-
passes three aspects of weather radar data: update rate, spatial
coverage (hereafter referred to simply as coverage), and the
accuracy and precision of the radar variable estimates (hereafter
referred to simply as accuracy and precision). With any given
radar system’s characteristics (e.g., transmit power, antenna size,
and frequency), improving the performance of one aspect (e.g.,
update rate) often leads to degradation in the performance of
one or both other aspects. Figure 1 shows the “data-quality tri-
angle,” where the three vertices correspond to update rate, cov-
erage, and accuracy and precision. The area of the triangle
represents the total available radar resources; that is, for a given
radar system, the area of the triangle is fixed. Thus, moving one
of the vertices (to change the performance of the radar) requires
adjusting one or both of the other vertices. In this sense, the
data-quality triangle represents the domain of trade-offs that can
be achieved with a particular radar system. For context, the illus-
tration includes the qualities of two commonly used WSR-88D
Volume Coverage Patterns (VCP): 212 for convective precipita-
tion observations, and 32 for weak precipitation or clear-air
observations. For this example, both triangles have the same
area; however, one has a higher update rate (VCP 212), while
the other one has better accuracy and precision (VCP 32). This
illustrates the trade-offs between different aspects of data quality
that must be considered when designing a VCP.

The “update rate” vertex of the data-quality triangle repre-
sents the time it takes for the radar to revisit a volume of
space. For example, VCP 212 has an update time of about
4.5 min, which is the fastest available among the VCPs used
operationally. In contrast, VCP 32’s update time is about 10
min. For all VCPs, key factors that determine the update rate
are the pulse repetition frequency (PRF), the number of
pulses per radial (M), and the number of elevation cuts
defined in the VCP.

The second vertex of the data quality triangle is coverage,
which describes the ability of the radar to observe the surround-
ing atmosphere. The elements that define coverage are the
radar spatial resolution and sampling (in azimuth, elevation,
and range), and the sensitivity. The spatial resolution is deter-
mined by the size of the radar resolution volume in azimuth,
elevation, and range to which the radar estimates are assigned.
For the WSR-88D, the size of the resolution volume is deter-
mined by the pulse width in range (250 m with its short pulse of
1.57 ms), the antenna beamwidth in elevation (∼18), and the
effective beamwidth in azimuth (∼18 for super resolution and
∼1.48 for legacy resolution). The spatial sampling determines
the location of the radar resolution volumes. For example, in
azimuth, the WSR-88D forms radials every 0.58 for super reso-
lution and every 18 for legacy resolution. In range, the WSR-
88D uses 250-m sampling, which matches the range resolution
of its short pulse. It should be noted that spatial resolution and
sampling are independent of one another and may be con-
trolled separately (Torres and Curtis 2007). For weather radars,
sampling is typically matched to resolution; so, WSR-88D users
may not be familiar with the fact that these are independent
radar characteristics. The final ingredient for radar coverage is
the sensitivity of the radar. For radar engineers, the radar sensi-
tivity determines the weakest echo a radar can observe at a
given range while maintaining acceptable signal-to-noise ratio
(SNR). For operational meteorologists, sensitivity relates
directly to the footprint of radar echoes, which engineers define
as detectability, a term that combines radar sensitivity and the
results of signal processing. For meteorologists, “sensitivity” is
most relevant in the presence of weak returns such as those
from freezing drizzle or convective boundaries. For the WSR-

FIG. 1. Weather radar data-quality trade-off triangle. The vertices
represent the update rate, coverage, and accuracy and precision,
while the area of the triangle represents the available radar resour-
ces. Movement away from the triangle centroid toward each vertex
represents an improvement in the data-quality aspect correspond-
ing to that vertex.
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88D, VCP 32 uses more pulses per radial (64 for surveillance
mode at 0.58) than VCP 212 (15 for surveillance mode at 0.58).
This results in higher detectability for VCP 32, which is per-
ceived as improved coverage.

The last vertex of the data quality triangle is accuracy and
precision, which are equivalent to the bias and standard devia-
tion of the radar-variable estimates. For meteorologists, this
relates to the reliability of the data; that is, how well the data
can be trusted to effectively inform their conceptual models.
The bias of a radar variable represents the average difference
between the estimated value and the true intrinsic value. While
zero bias would be ideal, in practice, factors such as the radar-
variable estimation technique, the SNR, and the presence of
unwanted signals, such as those from ground clutter, can lead
to nonzero biases. Sidelobe contamination is another example
of unwanted contamination that can increase the bias of radar-
variable estimates (Boettcher and Bentley 2022). In addition to
a radar variable’s bias, the estimate’s spread around its mean is
measured by the standard deviation. A large standard devia-
tion implies a larger uncertainty in the estimate and a smaller
likelihood that it actually represents physical reality. Factors
such as the scanning strategy and signal processing techniques
can affect the accuracy and precision of all radar-variable esti-
mates. For example, as mentioned above, VCP 32 uses more
pulses per radial than VCP 212; this results in estimates with
smaller standard deviation for VCP 32, which is perceived as
less noisy, smoother fields of radar data.

While all aspects of base data quality are important, a given
radar design may not be sufficient to always maintain accept-
able data quality for all weather hazards. Specific weather
threats put different demands on different aspects of the
trade-off triangle. The most common ways radar engineers
focus their efforts on improving a given aspect of data quality
are via modifications to the scanning strategies (e.g., increas-
ing the number of pulses at the cost of a slower update rate)
and improvements to the signal processing techniques (e.g.,
clutter filtering and radar-variable estimators). However, the
utility of the base data is ultimately judged by the users.

b. Radar meteorologist’s perspective of base data quality

At the most basic level, operational meteorologists desire
radar base data that facilitate interpretation. Differing weather
hazards are analyzed by NWS forecasters relying on radar base
data and conceptual models for sensemaking (Klein et al. 2006).
For example, patterns of radar features define supercells, and
the foundational conceptual models for supercells were devel-
oped from and are revealed by radar base data (Browning 1964;
Lemon and Doswell 1979; Doswell and Burgess 1993). When
forecasters analyze multiple base data fields, pattern recognition
is used to build a mental model to compare with known concep-
tual models. In the crucial domain of NWS warning decision
making, radar base data are the primary source (Andra et al.
2002; Brotzge and Donner 2013). Base data quality is also
important because meaningful data cues can be subtle or of
small scale. A particularly subtle example from winter hazards
is a ring of slightly enhanced ZDR below the melting layer and
close to the surface that suggests refreezing and thus a

likelihood of sleet at the surface. Small-scale examples include
short-lived tornadoes, such as those that occur along a quasi-
linear convective system (QLCS).

With respect to Fig. 1, operational meteorologists regard “data
quality” as the combination of the three aspects described previ-
ously, though they may not be aware of the individual contribu-
tors represented by the vertices in Fig. 1 (Torres et al. 2014).
That is, operational meteorologists do not typically think about
the inherent trade-offs represented by the data-quality triangle
and how they define the associated limitations on the overall pos-
sible data quality for a given radar system. For example, rotating
the WSR-88D antenna faster on a given VCP would increase the
update rate, but would also reduce the number of radar pulses
per radial, thus increasing the standard deviation of the radar-
variable estimates. The gap between the SENSR DQ team’s
radar meteorologist and the engineers’ concept of data quality
was an initial barrier that had to be overcome.

c. The historical precedent of engineer/meteorologist
studies addressing trade-offs for NWS forecasters

To overcome this gap in understanding, we first looked at
the NEXRAD program’s rich history of meteorology and
engineering collaborations, which inspired the SENSR DQ
study. Addressing the trade-offs associated with the WSR-88D
dual-polarization upgrade provides an excellent example. The
benefits of dual-polarization base data, such as revealing com-
plexities of the height and depth of the melting layer in winter,
had to be assessed against the loss of sensitivity primarily due
to splitting the transmit power into horizontal and vertical
channels. A series of trade-off studies of the sensitivity loss
against the benefits to operations occurred from 2009 to 2010
(Radar Operations Center 2010).

Initially, there were two sequential groups of subject-matter
experts investigating this trade-off, composed of experts from
the National Severe Storms Laboratory (NSSL) and NWS
operations in coordination with the Radar Operations Center
(ROC). Based on research conducted by the ROC Engineer-
ing Branch, the sensitivity loss was expected to be between 3.5
and 4 dB (Ice et al. 2011). By mimicking differing levels of sen-
sitivity loss for a variety of weather hazards, the subject-matter
experts were able to observe the impacts on hazard identifica-
tion. They found that a loss of 4 dB or less was operationally
acceptable, while also recommending a follow-on operational
assessment with multiple forecasters. The resulting Opera-
tional Assessment of Predeployment WSR-88D Dual-polari-
zation Data took place 17–19 August 2010, with 20 forecasters
(18 NWS, 2 U.S. Air Force) meeting in Norman, Oklahoma.
The operational benefits related to specific weather hazards
(e.g., winter, hail, and heavy rain) were identified by the fore-
casters, concluding that the benefits provided by the dual-
polarization upgrade were much greater than the loss in data
coverage due to the maximum expected 4-dB decrease in sen-
sitivity. Though there were other factors, these conclusions
contributed to the final decision to go forward with the deploy-
ment of dual-polarization to the WSR-88D fleet.

Other collaborative research activities involving NWS fore-
casters inspired the SENSR DQ study. Since a phased array
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radar (PAR) system is one promising candidate for a future
WSR-88D replacement, a major effort toward NWS forecast-
ers’ exposure to PAR rapid-scan data was conducted from 2010
to 2015 using data collected from the National Weather Radar
Testbed (NWRT) PAR at NSSL in Norman, Oklahoma.
The Phased Array Radar Innovative Sensing Experiment
(PARISE) project exposed NWS forecasters to severe weather
events scanned by the NWRT PAR with update rates of about
1 min (Heinselman et al. 2012; Heinselman et al. 2015; Bowden
et al. 2015; Bowden and Heinselman 2016; Wilson et al. 2017).
In addition to warning performance improvement, the cognitive
benefits of rapid-scan data included an increase in confidence,
lowering of ambiguity, better discernment of the threat, and
observed patterns better matching conceptual models. Cogni-
tive challenges due to the faster updates and potential data
overload were also investigated, with forecasters finding ways
to modify their workflow processes to compensate. This history
of PAR exposure to NWS forecasters and the associated cogni-
tive trade-offs revealed from the PARISE experiments moti-
vated the inclusion of PAR antenna systems in the SENSR DQ
study. All of these studies illustrate the differing ways collabora-
tive research among engineers and meteorologists provide
major contributions to the evolution of the NWS radar
network.

After review of these historical collaborations, we realized
that the differing data-quality perspectives required the interdis-
ciplinary team to first understand one another and build a holis-
tic view of its meaning. The radar meteorologist on the team
came to better understand the array of engineering contributors
to data quality for a given radar system, as presented in Fig. 1.
The radar engineers on the team came to understand how the
base data are used by NWS forecasters to support the hazard-
ous weather warning mission. Our shared understanding
allowed for a novel methodology that links specific radar char-
acteristics to the resultant impacts on NWS forecasters’ inter-
pretation of specific threats. The following sections describe this
methodology.

3. The expertise partnership: High-fidelity radar
engineering simulations with NWS forecaster analysis

As mentioned before, the SENSR DQ study relied on a
novel combination of radar engineering and meteorological
expertise. The engineering team members developed tools to
simulate radar base data for a given weather event as though
sampled by radars with differing characteristics and thus dif-
fering performance. These radar-characteristic variations rep-
resented a variety of dual-polarization radars, including those
with dish antennas and planar PARs. This simulation capabil-
ity was of sufficient quality to produce radar data with the
same “look and feel” of real weather radar data (i.e., high-
fidelity). The simulation contribution also provided flexibility
for case selection and simulation of any weather scenario as
though observed by weather radars with differing characteris-
tics. For both case selection and simulation analysis, the mete-
orologist provided expertise for radar data interpretation from
the perspective of the NWS hazardous weather warning mis-
sion. Weather cases for the simulations were chosen from the

National Centers for Environmental Information (NCEI)
database, which contains base data from any WSR-88D in the
fleet, making this approach highly flexible and cost effective.

a. Radar simulations

The Signal Processing and Radar Characteristics (SPARC)
simulator is a versatile weather radar in-phase and quadrature
(IQ), time series simulator able to ingest archived fields of
dual-polarization radar data and produce IQ data as it would
be observed by a specified radar system (Schvartzman and
Curtis 2019). The IQ data produced by the SPARC simulator
are processed to generate the base data using a weather radar
digital-signal-processing simulator (herein referred to as the
Signal Processor). The Signal Processor was developed in
house to support NSSL’s weather radar engineering research
and development activities; it implements a collection of tech-
niques including ground-clutter mitigation, range-and-velocity
ambiguity mitigation, and radar-variable estimation, similarly
to what the WSR-88D signal processor does. Thus, the cou-
pling of the SPARC simulator with the Signal Processor allows
for end-to-end radar design, emulating different subsystems
(e.g., antenna and receiver), scanning strategies (e.g., PRF and
number of samples), and signal processing techniques. From
the selected WSR-88D cases, six fields of radar variables are
ingested into the SPARC simulator: Z, V, SW, ZDR, differen-
tial phase (PHI), and CC. For the modeled radar design (char-
acterized by the antenna pattern, spatial sampling grid,
transmitted waveform, etc.), simulated returns are calculated
through multiple steps to emulate the time series signals that
would be received by the radar. These data are then processed
using the Signal Processor to produce radar-variable fields as
would be observed by the modeled radar. This makes the com-
bination of the SPARC simulator and the Signal Processor
ideal to study and better understand the data-quality implica-
tions of adopting different technologies (e.g., PAR) and/or
radar designs on the quality of radar-variable estimates. Figure
2 presents a simplified block diagram of the simulation process
with the WSR-88D input data on the left. The SPARC output
is processed with the Signal Processor and shown on the right.
For this example, the simulated radar characteristics are that
of the WSR-88D to validate the simulation quality. Though
the images are not identical, the simulated fields are nearly
indistinguishable from the WSR-88D input in terms of how
they convey the threat to an NWS forecaster. This high level
of data quality produced by the SPARC simulator is indepen-
dent of any chosen weather event.

The SPARC simulator was initially designed for simula-
tions of data corresponding to a single radar plan position
indicator (PPI), which was sufficient for all the aspects of the
SENSR DQ study except for elevation sidelobe contamina-
tion. To address this limitation, the engineering team
enhanced the SPARC simulator to include the effects of the
full volumetric antenna pattern (i.e., azimuth and elevation)
to evaluate the impact of elevation sidelobe contamination on
data interpretation (Nai et al. 2020a). The design of the
SPARC simulator is such that the modeled radar’s sidelobe
levels cannot be lower than those of the observing system that
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created the input data (the WSR-88D for the SENSR DQ
study). For the purposes of the SENSR DQ study, using radar
design characteristics (such as sidelobe levels) that result in
the same or worse performance than the WSR-88D was desir-
able. That is, the performance of the WSR-88D is well under-
stood and currently serves as the standard by which potential
replacement radar systems should be evaluated (NOAA
2015). However, given that affordability is a major challenge,
it is prudent to explore how the mission of the NWS would be
impacted by the adoption of replacement radar systems with
slightly degraded performance. This information would
be important either to substantiate the investment in a more
expensive design or to justify the relaxation of one or more cost-
driving requirements to improve affordability while keeping the
impacts to data quality at minimal levels. Because of this, the
SENSR DQ study’s goal of exploring the complex trade-offs
between cost and impacts on user data interpretation included
simulating characteristics that were the same or slightly
degraded with respect to the WSR-88D.

This engineering simulation capability is a key element of
the unique methodology presented here, providing the flexi-
bility to ingest weather events diverse in both hazard type and
geography. The fidelity of the simulations is sufficient for
expert-forecaster analyses in terms of identifying key mission-
critical meteorological features. As the specific radar charac-
teristic (e.g., sensitivity) is varied, the direct impact on data
interpretation (e.g., changes to the footprint of low Z echoes)
can be analyzed and documented.

b. NWS forecaster perspective

The SENSR DQ project funded a radar meteorologist on
the team to provide expertise for both selecting appropriate
weather cases for the simulations and qualitatively assessing
the impact on data interpretation from changes in radar

characteristics. With over 20 years of experience in WSR-88D
training for NWS forecasters and 10 years in NWS operations,
Boettcher had vast experience interacting with NWS forecast-
ers from novices to experts. Throughout the process of case
selection and simulation analysis, she had numerous discus-
sions with operational NWS forecasters to support her goal of
representing the NWS forecaster population as a whole.
While this was sufficient for our proof-of-concept study, an
extension of our methodology to support decisions toward
either upgrades to the existing system or a WSR-88D replace-
ment should include more NWS forecasters and a broader
collection of stakeholders. Boettcher’s NWS training focus
areas were the WSR-88D hardware and software upgrades,
and the human-centered domain of NWS warning decision
making, the latter of which provided expert judgement for the
analysis phase of the SENSR DQ study. Initially, the base
data produced from the engineering simulations with a WSR-
88D-like radar were qualitatively analyzed by Boettcher with
the goal of increasing simulation fidelity (i.e., the goal was for
the simulated weather features to be consistent with those
observed with the WSR-88D). This iterative simulation refine-
ment process continued until Boettcher could not identify
which image was from the actual WSR-88D versus which was
simulated with the WSR-88D as the modeled radar (Fig. 2).

For each of the cost-driving radar design characteristics
studied, cases were chosen that stressed the specific character-
istic (Table 1). For example, events with relatively weak signal
returns were selected for the sensitivity study since a reduction
in radar sensitivity could result in the loss of important
weather features. The specific weather threats included winter
events, such as lake-effect snow, and warm season events, such
as convective outflow boundaries. Similarly, cases of severe
convection with large reflectivity gradients were selected for
the study on antenna sidelobe levels since increasing sidelobe

FIG. 2. Simplified block diagram of the engineering simulation method. (left) The four-panel image corresponds to
the WSR-88D input data. The SPARC simulator produces simulated time series (IQ) data. (right) The Signal Proces-
sor ingests the simulated time series data and produces simulated fields of radar variables as would be observed by the
modeled radar system. In this case, the characteristics of the WSR-88D were chosen for the modeled radar to demon-
strate the high fidelity of the simulation capability.
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levels result in increasing sidelobe contamination. All the cases
were chosen from the WSR-88D archive of base data from
2013 to 2018 that include dual-polarization variables. All radar
images presented in this paper were captured from the
Gibson-Ridge Analyst–Level 2 (GRLevel2) radar data viewer,
which was used to display and evaluate radar data.

4. Methodology for determining trade-offs between cost
driving radar characteristics and user impacts

To explore the complex trade-offs between radar design and
user impacts, it was crucial to devise a methodology that could
directly link data produced by different simulated radar designs
to forecasters’ data interpretation process. It was necessary
to systematically adjust radar design characteristics, such as
antenna sidelobe levels, and produce realistic base data
simulations that isolated the effects of the specific charac-
teristic. This section describes the method that evolved
from our symbiotic, two-way learning commitment to reach
our goals.

a. Pre-analysis feedback loop for each of the radar
characteristics studied

The three-step pre-analysis phase required the greatest time
commitment. The first step was to refine the simulator settings
such that the simulated base data met the baseline data-quality
expectations of forecasters. That is, the simulated data should
be free of artifacts that could hinder interpretation. The next
step was to ensure that any data-quality changes in the simula-
tions were the direct result of changing specific radar charac-
teristics. The third step was to develop an analysis method
that could be applied to these differing characteristics with
sufficient granularity to capture the data-quality impact on
data interpretation as precisely as possible.

1) STEP 1: DO THE DATA LOOK REAL?

As illustrated in Fig. 3, the first step was refining the initial
engineering simulations to determine if the simulated data met
forecasters’ (represented by Boettcher) baseline expectations

for data quality (i.e., do the data look real?). The quality of
each simulated dataset depends on an extensive number of
engineering “settings.” Initial attempts resulted in data con-
taining artifacts that would hinder an NWS forecaster’s inter-
pretation process. A feedback loop to refine the simulations
was established as illustrated in Step 1 of Fig. 3. Figure 4a
shows simulated Z, SRV, ZDR, and CC for an unsatisfactory
early simulation that produced data with apparent smoothing,
though none was applied with GRLevel2. Figure 4b shows the
results from a subsequent simulation with much more realistic,
improved fidelity of the radar data. This apparent smoothing
was an artifact produced by the simulation and not the
intended data quality effect of a given radar characteristic.
By providing forecaster-perspective feedback to the engi-
neers, the simulations were refined to remove artifacts not
readily apparent to the engineers. This process (Step 1 in
Fig. 3) was repeated until the fidelity of the simulation was
sufficient to meet forecaster expectations of data quality, as
discussed in section 3b.

FIG. 3. An overview of the methodology for each of the radar char-
acteristics studied.

FIG. 4. A convective outflow boundary event. (a) A low fidelity simulation showing (top left) Z, (top right) SRV, (bottom left)
ZDR, and (bottom right) CC. (b) The smoothness of the fields indicates that further simulation refinement was required, with the
resultant high-fidelity version shown.
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FIG. 5. A hail core within a bow echo event. (a) One simulation for a radar with very low range sidelobes and (b) a
second simulation of the same case but for a radar with much higher range sidelobes. As expected, the simulations for
the radar with higher range sidelobe levels result in greater range-sidelobe contamination.
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2) STEP 2: DO THE SIMULATIONS SUPPORT THE STUDY?

Once the fidelity of the simulated base data was sufficient,
the next step in our feedback loop was to ensure that the
radar characteristics we wished to study were the independent
variables that caused the data quality to change from one sim-
ulation to another (Step 2 of Fig. 3). We use an example from
the range-sidelobe study to depict this process. Due to its
klystron amplifier, the WSR-88D is capable of transmitting a
short, high-power pulse, which does not produce range side-
lobes. Most WSR-88D users are unlikely to be familiar with
potential data-quality issues arising from waveforms with
range sidelobes. Unlike the WSR-88D, other radar designs,
such as a relatively low-powered PAR, may require the use of
pulse compression associated with long waveforms (to
improve sensitivity), which results in range sidelobes. How-
ever, techniques described in Torres et al. (2017) and in
Schvartzman and Torres (2019) can be used for mitigation of
potential range-sidelobe contamination, which is apparent in
the base data as a radial enhancement of Z on either side of
large gradients aligned along the range dimension. As with
azimuthal sidelobe contamination from the antenna pattern,
the extension of weak echoes into clear-air regions is the most
obvious effect of range-sidelobe contamination. Figure 5 pro-
vides two examples of simulated data with differing range-
sidelobe levels, where Fig. 5b has higher levels than Fig. 5a.
Comparing these two images, note the greater extension of Z
in the clear air in the highlighted region (see arrows) for

Fig. 5b as well as that of the other radar variables. These two
simulations corresponding to radar systems with different
range-sidelobe levels (and others not shown) demonstrate
that, as required, the extent of range sidelobe contamination
is only a function of the modeled range-sidelobe level, which
was the independent variable from one simulation to the next.
If needed, this process (Step 2 in Fig. 3) was repeated until
the variable was isolated.

3) STEP 3: IS THE ANALYSIS APPROACH SUFFICIENT?

Unlike the previous two steps, which focused on refining
the engineering simulations, Step 3 in Fig. 3 is focused on
developing and refining the data analysis methods. It is obvi-
ously important to extract as much meaning as possible from
the data analyses; therefore, we focused on developing analy-
sis methods that were tailored to each of the radar character-
istics studied. This was needed because changes in a given
radar characteristic result in data-quality impacts specific to
that characteristic. That is, as a radar characteristic gradually
changed in our simulations, so did the resulting radar data.
For the different radar characteristics that we studied, the
impacts to the radar data manifested in different ways, from
the extent of contamination in the data to subtle differences
in how a signature was revealed. Further, given the complex-
ity of the human data-analysis process, these distinct manifes-
tations led to different interpretation impacts. The qualitative
data interpretation process for meteorologists is inherently

FIG. 6. A hail core event. (top) Z and (bottom) ZDR with (left) 0.78 azimuthal sampling and (right) 0.58 azimuthal
sampling using a PAR. For both columns, the angle perpendicular to the array is in the direction of the interface
between areas of big drops and hail (marked by arrow).
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subjective, as the cognitive goal is supporting or refuting con-
ceptual models and revealing processes (Hoffman et al. 2017).
Due to this underlying human cognitive processing, an analy-
sis method that uses an arbitrary number of levels of discern-
ment may not be reliable or even feasible. For this study, the
resultant analyses ranged from a binary comparison (e.g., are
signatures from two different sampling grids revealed simi-
larly or is one more apparent?) to a five-level ranking based
on specific data-quality impacts (e.g., to what extent is con-
tamination from different antenna sidelobe levels distracting
from the interpretation of supercell features?). Though future
studies may use different analysis granularity, the overall
methodology is general and adaptable. The following exam-
ples are specific to our study and are shown here to illustrate
the complex connection between cost-driving radar design
characteristics and impacts on radar base data interpretation
from the NWS perspective.

(i) Two-level analysis

An example of a binary comparison analysis comes from
studying different azimuthal sampling grids with a PAR
antenna. The data-quality impacts from changes in the azi-
muthal sampling grid manifested as either “very subtle differ-
ences” or “no differences” in the interpretation of the data.
Our analysis focused on comparing data from two different
sampling grids and determining if one of the grids resulted in
better or the same data quality in support of data interpreta-
tion. For example, one of the cases presented a radially ori-
ented interface (arrows in Fig. 6) between the areas of big
drops (∼3–6 dB) and hail (∼0 dB) in ZDR. The first sampling
grid on the left panels is uniformly spaced with a 0.78 azi-
muthal sampling interval between adjacent radials (hereafter
referred to as 0.78 sampling). The second sampling grid on the
right panels is uniformly spaced with a 0.58 azimuthal sam-
pling interval between adjacent radials (hereafter referred to
as 0.58 sampling). In these two simulations, the direction per-
pendicular to the array (i.e., broadside of the array) is pointed
directly at the interface between the areas of big drops and hail.
Comparing the bottom panels in Fig. 6, the 0.78 sampling results
in a less sharp and less apparent boundary in azimuth between
the big drops and hail inZDR. Because of these subtle differences,
the 0.58 sampling was rated better in this case. Depending on the
case and the sampling grids applied, the comparison sometimes
resulted in no difference in the interpretation of the hazard.

(ii) Three-level analysis

An example of a three-level analysis comes from the study
of azimuthal sidelobe contamination as the antenna pattern
sidelobe levels were varied. For trained forecasters, this type
of contamination is usually straightforward to identify in real
time because the large Z gradient that produces the contami-
nation (Boettcher and Bentley 2022) is evident on the same
radar image. Thus, the extent of the footprint of the contami-
nation is sufficient to judge the data-interpretation impact,
and the three categories defined were “acceptable,”
“marginal,” and “unacceptable.” For the simulations in Fig. 7,
there is a large Z gradient due to the hail core. The top four-

panel image (Fig. 7a) is an example of a simulation rated as
“acceptable.” That is, the azimuthal contamination in Z,
SRV, ZDR, and CC is minimal and thus, does not impact data
interpretation. The middle four-panel image (Fig. 7b) is an
example of a simulation rated as “marginal.” That is, the azi-
muthal contamination is more extensive and somewhat
detracts from data interpretation. The bottom four-panel
image (Fig. 7c) is an example of a simulation rated as
“unacceptable.” In this case, the azimuthal contamination

FIG. 7. A hail core event. Each four-panel group shows (top left)
Z, (top right) SRV, (bottom left) ZDR, and (bottom right) CC for a
series of simulations for azimuthal sidelobe contamination for images
rated as (a) “acceptable,” (b) “marginal,” and (c) “unacceptable.”
The narrow data loss on the northern portion of the storm is due to
beam blockage.
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footprint is extensive and more significantly detracts from
data interpretation.

(iii) Five-level analysis

The first example of a five-level analysis is the elevation
sidelobe contamination study (Nai et al. 2020a). Engineers

understand that, in reality, sidelobes are an ever-present char-
acteristic of a radar’s antenna radiation pattern, and sidelobe
contamination includes unwanted signals from all directions
other than the direction of interest. Operational meteorolo-
gists have a different perspective: the word “sidelobes” typi-
cally refers to the data contamination on the radar images.

TABLE 2. Five-level rating system for the elevation sidelobe contamination study.

Numeric level Definition Description

1 Fully acceptable No distractions
2 Acceptable Minimal distractions
3 Ambiguous Impact of distractions would vary significantly among individuals
4 Unacceptable Sufficient distractions to affect nearly all individuals
5 Completely unacceptable Dramatic distractions for decision makers or features obscured

FIG. 8. A supercell event. (a) Z (left column) and SRV (right column) at 0.58 elevation with ascending levels of ele-
vation sidelobe contamination from top (rating of 1, “fully acceptable”) to bottom (rating of 5, “completely unac-
ceptable”). The data-quality impacts caused by increasing sidelobe levels can be seen in the SRV field in the circled
area (adapted from Nai et al. 2020a). (b) For the simulation rated unacceptable, a closer look at the transition in azi-
muth from the apparent circulation midline (solid line) at 0.98 and 0.58 to the midlevel mesocyclone midline at
1.38 (solid line). The midline position of the low-level apparent circulation is indicated at 1.38 by the dashed line.
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Initially, this fundamental difference in perspective between
the engineers and the meteorologist on our team made it diffi-
cult to fully understand one another in our conversations. As
we began to understand each other better, we came together
on a naming convention based on the Z gradient source of the
sidelobe contamination. As described in the previous exam-
ple, when azimuthal sidelobe contamination is evident, the Z
gradient source is also apparent on the same radar image.
However, elevation sidelobe contamination presents itself
without a source on the same radar image and, unfortunately,
it is most likely to occur in one of the most cognitively
demanding NWS domains: severe and potentially tornadic
supercells. Depending on the storm geometry with respect to
the radar, elevation sidelobe contamination can appear as an
apparent circulation (Piltz and Burgess 2009; Boettcher and
Bentley 2022), requiring additional cognitive resources to
diagnose in real-time. A five-level analysis was used for the ele-
vation sidelobe contamination study based on the level of
“distraction” to the data-interpretation process generated by
the nature and extent of the sidelobe contamination on the
low-level radar images. The analysis process mirrored the NWS
forecaster storm interrogation process of examining multiple
elevations to determine storm structure and salient features.
Distraction in this context is defined as a hindrance to the fore-
caster’s data interpretation process due to the contamination.
Table 2 describes the differing levels used, which reflect our
estimation of how the NWS population as a whole could
respond to the level of elevation sidelobe contamination.

Elevation sidelobe contamination was often present on one or
more of the simulated lower-elevation radar images. Figure 8a
shows Z and SRV corresponding to five simulations with gradu-
ally larger antenna sidelobe levels. These were rated from “fully
acceptable” to “completely unacceptable.” The case in Fig. 8a
(adapted from Nai et al. 2020a) demonstrates a noisy SRV field
with an expanding footprint. Given the need to monitor the
supercell for tornadic circulations, the size of the footprint was
not the sole contribution to the rated level of distraction. For
each simulation, while progressively examining the data from
the lowest to the highest elevations, there was an apparent circu-
lation at the lowest two elevations resulting from the contamina-
tion. However, above the lowest two elevations, the midlevel
mesocyclone was seen with no contamination, and this true mid-
level circulation was slightly shifted in position relative to the
low-level apparent circulation, suggesting that the low-level cir-
culation was not valid. This shift is demonstrated in Fig. 8b, with
a closer look at the transition from 0.98 to 1.38 and the associated
circulation midlines depicted. As the simulated antenna sidelobe

levels progressively increased, the low-level contamination
became more salient and thus more likely to detract from the
shift in position described above. The example simulations
shown in Fig. 8 illustrate the full range of data-interpretation
impacts used in this analysis.

The second example of a five-level analysis is the sensitiv-
ity study. Sensitivity is the radar characteristic that deter-
mines the strength of the weakest signals that are revealed
in base data displays. The impacts of sensitivity on data
interpretation are very different from elevation sidelobe
contamination, as the effect of sensitivity is limited to the
availability (or footprint) of weak but important weather
features for a single elevation. Ratings were based on the
footprint of very low Z and other radar variables, which
are directly related to the simulated sensitivity. Table 3
describes the data-loss conditions for each of the five levels.
Figure 9 shows Z, ZDR, and KDP corresponding to five simu-
lations with gradually decreasing sensitivity. These were
rated from “fully acceptable” to “completely unacceptable”
due to the gradually shrinking footprint of echoes, specifi-
cally a dendritic growth layer at 6.08 during a heavy snow
event. Though the analysis for elevation sidelobe contami-
nation and sensitivity both employed five levels, the judge-
ment was based on very different elements: distraction to
the severe convection interrogation process versus the areal
extent of data loss.

b. Analyze all the cases for the radar characteristic

As illustrated in Fig. 3, once the analysis method was defined
for a given radar characteristic, the final step was the analysis for
all the relevant cases, which was relatively straightforward (the
appendix lists all the cases used for each radar characteristic stud-
ied). The simulations for all the cases with a systematically varied
radar characteristic were analyzed by Boettcher as a proxy for
the perspective of the NWS forecaster population as a whole.
This population includes a wide range of interpretation expertise,
spanning from novices to routine experts to adaptive experts
(Hunter et al. 2017), where routine experts function well per-
forming procedure-driven tasks, while adaptive experts have the
capacity to modify task processes as needed to meet overall
goals. Thus, viewing the data solely from the perspective of
Boettcher (an expert) was not sufficient. To gain the perspective
of the NWS forecaster population, numerous discussions with
NWS forecasters took place supporting Boettcher’s goal of per-
forming the analyses from the perspectives of a continuum of
levels of expertise. For example, some sidelobe contamination
simulations had sufficient data-quality distractions to interfere

TABLE 3. Five-level rating system for the sensitivity study.

Numeric level Definition Description

1 Fully acceptable No or trivial data loss
2 Acceptable Minimal data loss
3 Ambiguous Marginal impact on the presentation of significant features
4 Unacceptable Data loss partially erodes the presentation of important weather features
5 Completely unacceptable Data loss significantly erodes the presentation of important weather features
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with data interpretation for the entire NWS population, while
others presented more subtle contamination that would be
missed by all but those with the highest level of adaptive exper-
tise. The analyses were based on how well the feature of interest
was revealed in the data to a forecaster viewing that data with
the time constraint of warning operations.

For all the cases, the simulations were randomized and pre-
sented “blindly” for analysis. For example, the sidelobe levels
of the antenna pattern that were used for the azimuthal and

elevation sidelobe simulations were unknown to Boettcher.
The results of each of these studies linking different radar
characteristics to data interpretation are beyond the scope of
this paper and are available from the SENSR Data Quality
Simulations Final Report (Nai et al. 2020b). Table 4 summa-
rizes the characteristic studied, the analysis type performed,
and the number of cases (with associated threats) analyzed,
while the appendix provides a case list for each characteristic
studied.

FIG. 9. A winter dendritic growth layer event. (left) Z, (center) ZDR, and (right)KDP simulations at 6.08 elevation with descending sensi-
tivity from top (rating of 1, “fully acceptable”) to bottom (rating of 5, “completely unacceptable”). The data-quality impact caused by the
decreasing sensitivity is the erosion of a dendritic growth layer aloft during a heavy snow event (circled).
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5. Summary and recommendations

This paper presented a methodology that serves as a model
for understanding linkages between radar design characteristics
and the resultant impacts on NWS forecasters’ data interpreta-
tion to detect hazards. Through examples, we showed that these
linkages are complex in ways not initially expected by the
authors. For the radar engineers, the diversity of how meteorolo-
gists interpret the differing weather threats was not well under-
stood. In contrast, the meteorologist did not have a deep
understanding of the relationships between cost-driving radar
characteristics and the resultant limitations on data interpreta-
tion. This collaboration resulted in a shared understanding of the
complexity of relating radar design characteristics to user
impacts. Like previous studies supporting the NEXRAD pro-
gram, this involved a mutually beneficial engineer–meteorologist
collaboration, and this work is an advancement of the historic
evolution of weather radar development to support the NWS
warning mission. The result of our deep commitment to two-way
learning is the methodology presented here that is highly efficient
and consistently relevant to the NWS hazardous weather warning
program.

This methodology is adaptable to future studies and aligned
to the precedent studies that supported both the origin of the
NEXRAD program and the numerous and mission-support-
ive follow-on WSR-88D upgrades, such as dual-polarization.
The methodology has the unique benefit of closely integrating
high-fidelity base data simulations as obtained by radar sys-
tems with varying characteristics with NWS forecaster needs
for interpreting a range of hazards. Its adaptability provides a
roadmap for additional research toward a WSR-88D replace-
ment, addressing the challenge of balancing the trade-offs
among radar capabilities, cost, and impact to users. Subse-
quent interdisciplinary teams can adapt this methodology for
refinement of these trade-offs, such as including groups of
NWS forecasters in a formal assessment, as was done for the
deployment of WSR-88D dual-polarization. The process of
deriving quantitative radar design criteria that incorporates
these complex trade-offs supports both NOAA decision mak-
ers considering a WSR-88D replacement and the NWS fore-
casters who use the system as they deliver mission-critical
hazardous weather warning services.

While the inclusion of NWS meteorologists and radar engi-
neers using an adaptation of this methodology is a necessary
component toward a WSR-88D replacement, the authors do
not wish to convey that it would be sufficient. All the essential

stakeholders, coordinated within a well-defined, closed-loop
structure, would bring the necessary diversity of perspectives
together. Expanding the number of NWS forecasters for base
data interpretation exercises would be an important component
as is resourcing appropriate levels of radar-engineering exper-
tise. Beyond these two groups are research meteorologists,
including those exploring NWS-focused benefits and limitations
of rapid-scan dual-polarization base data, NWS core partners
including broadcast meteorologists who present radar data to
the general public, and emergency managers who use radar
data to make decisions. Finally, NOAA decision makers are
crucial stakeholders, as they must balance deployment and
operation-and-maintenance (O&M) costs with radar perfor-
mance to support the NWS mission. Optimizing the decision
outcome is most likely with NOAA decision makers, radar
engineers, research meteorologists, NWS core partners, and
NWS forecasters working together to derive quantitative radar
design criteria based on clearly defined trade-offs among cost,
capabilities, and user impacts.
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APPENDIX

Simulated and Analyzed Case Summary

Table A1 lists the weather cases selected, simulated, and
analyzed for each of the radar design characteristics
studied.

TABLE 4. Analysis summary.

Radar design characteristic Analysis type No. of cases Threat

Antenna pattern sidelobes
Azimuthal Three level 9 Hail cores
Elevation Five level 13 Supercells

Range sidelobes Three level 6 Hail cores
Sensitivity Five level 8 Winter, convection
Beamwidth Two level 16 Winter, convection, circulations
Azimuthal sampling Two level 16 Winter, convection, circulations
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TABLE A1. List of cases simulated and analyzed for each radar
characteristic studied.

Radar design characteristic Case list

Antenna pattern sidelobes
Azimuthal 2350 UTC 3 May 2012 KBGM 0.98

2358 UTC 3 May 2012 KBGM 0.58
2212 UTC 30 Jul 2013 KGLD 19.58
2140 UTC 30 Jul 2013 KGLD 0.58
0036 UTC 7 May 2016 KCBX 0.58
0018 UTC 7 May 2016 KCBX 0.58
2258 UTC 12 Jun 2017 KAMA 1.28
2242 UTC 12 Jun 2017 KAMA 1.28
2258 UTC 12 Jun 2017 KAMA 0.88

Elevation 2055 UTC 27 Jul 2014, KMRX
0347 UTC 14 Jun 2014, KUDX
0120 UTC 18 Sep 2015, KTWX
1905 UTC 4 Aug 2015, KBOX
0011 UTC 21 Jun 2015, KUDX
2203 UTC 10 Sep 2015, KUEX
2343 UTC 26 Apr 2015, KFWS
2314 UTC 10 Sep 2015, KTWX
0050 UTC 2 Apr 2014, KDYX
2258 UTC 25 May 2014, KDFX
0445 UTC 22 Jul 2014, KLRX
0039 UTC 23 May 2015, KGLD
2112 UTC 1 Jun 2015, KSFX

Range sidelobes 2021 UTC 11 Apr 2012, KAMA
2301 UTC 19 Jul 2017, KARX
2021 UTC 12 Jun 2017, KCYS
0305 UTC 23 Jun 2017, KEAX
1719 UTC 22 Jul 2017, KLWX
1214 UTC 11 Jun 2017, KMPX

Sensitivity 1833 UTC 22 Jul 2017, KLWX
2240 UTC 4 Mar 2015, KLVX
2039 UTC 18 Nov 2014, KBUF

(long pulse)
1211 UTC 19 Nov 2014, KBUF

(short pulse)
1108 UTC 4 Jan 2017, KGRR
0329 UTC 22 Jan 2015, KAMA
2219 UTC 23 May 2015, KTLX
1457 UTC 25 De KGYX

Beamwidth 2037 UTC 2 Mar 2014, KTLX
2037 UTC 2 Mar 2014, KTLX
0001 UTC 4 Jan 2015, KENX
2240 UTC 4 Mar 2015, KLVX
2349 UTC 3 May 2012, KBGM
2325 UTC 10 Sep 2015, KTWX
2006 UTC 30 Jun 2014, KDVN
1159 UTC 27 Jun 2014, KOAX
0302 UTC 29 Feb 2012, KTWX
0709 UTC 29 Feb 2012, KSGF
0023 UTC 19 May 2013, KDDC
2251 UTC 27 May 2013, KUEX
2119 UTC 28 May 2013, KTWX
0353 UTC 18 Jun 2014, KFSD
0119 UTC 11 Sep 2015, KTWX
0028 UTC 26 May 2016, KTWX

Azimuthal sampling 2037 UTC 2 Mar 2014, KTLX
2037 UTC 2 Mar 2014, KTLX
0001 UTC 4 Jan 2015, KENX
2240 UTC 4 Mar 2015, KLVX

TABLE A1. (Continued)

Radar design characteristic Case list

2349 UTC 3 May 2012, KBGM
2325 UTC 10 Sep 2015, KTWX
2006 UTC 30 Jun 2014, KDVN
1159 UTC 27 Jun 2014, KOAX
0302 UTC 29 Feb 2012, KTWX
0709 UTC 29 Feb 2012, KSGF
0023 UTC 19 May 2013, KDDC
2251 UTC 27 May 2013, KUEX
2119 UTC 28 May 2013, KTWX
0353 UTC 18 Jun 2014, KFSD
0119 UTC 11 Sep 2015, KTWX
0028 UTC 26 May 2016, KTWX
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